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Abstract. We prove an equidistribution statement for the reduction of Galois orbits of CM points on

the special fiber of a Shimura curve over a totally real field, considering both the split and the ramified
case. This result is achieved by associating to the reduction of CM points certain Hilbert modular forms

of weight 3/2 and by analyzing their Fourier coefficients. Moreover, we also deduce the Shimura curves

case of the integral version of the André–Oort conjecture.
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4. An André–Oort-like Result 27
References 30

1. Introduction

In [27] Jetchev and Kane proved an equidistribution result for a reduction of Galois orbits of Heegner
points in a modular curve with both the conductor and the discriminant going to infinity. In this work we
generalize their result to quaternionic Shimura curves over a totally real number field F , where we also
allow the quaternion algebra both to be split and to ramify at the prime at which the reduction takes place.

Since the beginning of this century, the equidistribution of the reduction of Galois orbits of CM points
has been a fruitful area of research. In [36], Michel gave a subconvexity bound for certain Rankin–Selberg
L-functions and used this bound to prove an equidistribution property for Galois orbits of supersingular
elliptic curves. His result was recently generalized to a simultaneous equidistribution in [1], exploiting
dynamics and ergodic theory. On the other hand, Cornut and Vatsal in [9] proved that the reductions of
CM points (modulo a non-split prime in a CM extension of F ) of a Shimura curve are equidistributed in the
supersingular locus. This was obtained by the mean of Ratner’s theorem, with the noticeable application
consisting of the Mazur’s conjecture on the non-vanishing of central values of automorphic L-functions.
In [41], we proved a companion equidistribution on the special fiber of a Shimura curve attached to some
ramified primes. Moreover, in [49] a variant of these equidistributions for PEL Shimura varieties is treated.
Lastly, Jetchev and Kane in [27] partially generalized [9] for modular curves.
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For a overview on analogous recent p-adic equidistributions, we refer to [13]. In the rest of this intro-
duction, we concisely state our main result, the idea of its proof, and a diophantine application.

Let B be an indefinite quaternion algebra over F . Let also K be a CM extension of F . In this work we
deal we both the following situations:

(1) B is ramified at v and v ramifies in K;
(2) B is unramified at v and v is inert in K.

For the sake of clarity, we underline that in the setting of Shimura curves CM points are sometimes
called Heegner points, in particular in the case of modular curves. We follow the terminology of CM point
to differentiate between the points on the Shimura curve and the corresponding points on an elliptic curve,
which we do not discuss.

Let {s1, ..., sh} be the supersingular or superspecial locus1 of the special fiber of a Shimura curve. The
moduli interpretations of its local integral models at v allow us to consider the endomorphism ring End(si)
of the supersingular point, and to define w(si) as the number of units modulo {±1} of End(si). In the
superspecial case, the analogous w(si) is defined through the construction of Section 2.3.4.
Let ? ∈ {ss, ssp}, and define µ? be the normalized counting measure on the supersingular (respectively,
superspecial) locus {s1, ..., sh} of special fiber of the Shimura curve given by

µ?(si) =
w(si)

−1∑h
j=1 w(sj)−1

.

Moreover, in the case of Bv ramified, let also µssp
in be the normalized counting measure on the set of

irreducible component {c1, ..., ck}, given by

µssp
in (ci) =

w(ci)
−1∑h

j=1 w(cj)−1

where w(ci) = # End(ci)/2 is the weight of ci. Here by End(ci) we mean the endomorphisms of the formal
group attached to the reduction of a CM point modulo an inert prime, which lands on the connected
component ci.

The main result of our work goes as follows.

Theorem A. The reductions at v of the Galois orbits of CM points are equidistributed for the discrimi-
nants and the conductors varying, i.e., for their absolute norms going to infinity:

• in the supersingular locus of the Shimura curve with respect of µss for Bv ' M2(Fv) and v inert
or ramified in K;
• in the superspecial locus of the Shimura curve with respect to µssp for Bv ramified and v ramified

in K;
• in the smooth locus of the Shimura curve with respect to µssp

in for Bv ramified and v ramified in
K.

This theorem gives a generalization of [9], [41] and, of course, of [27]. Stricto sensu, this generalization
for [9] and [41] is only partial: in fact, although we do not fix the discriminant, we can only reduce by a
single prime, loosing the simultaneous reduction of the two aforementioned works.

Let us briefly sketch the main objects and techniques we make use of.
We begin describing the special points of the indefinite and definite Shimura curves, both as adelic double
quotients as in [47] and in terms of their moduli interpretations. In order to give these two descriptions
also for their reduction in the special fiber at v, we turn to study the local integral models of the Shimura
curve at v, for Bv unramified and ramified respectively. This changes dramatically their geometry and
consequently the arithmetic of their moduli problems. In particular, in the ramified case we exploit the

1Note that these two sets do not have the same cardinality.
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Figure 1. The illustration (drawn by Francesco Beccuti) represents the Shimura curve over Q
of discriminant 77 and maximal level structure, whose CM points reduced modulo 7 land in the
superspecial locus (on the left) and to the supersingular locus for a prime p 6= 7, 11. Note that
on the right hand side the two curves should intersect 6 times, since the special fiber must have
genus 5.

Cerednik–Drinfeld uniformisation as in [4] and the related moduli intepretation of the Drinfeld plane in
terms of formal OBv

-modules. On the other hand, if Bv ' M2(Fv), only a local uniformisation in terms
on Lubin–Tate spaces is available, and we essentially use the moduli interpretation of [7]. All of this
eventually allows us to state a correspondence between the set of CM points x of fixed discriminant and
conductor reducing to a supersingular or superspecial point s and the set of (conjugacy classes of) optimal
embeddings End(x) into End(s). This correspondence has a “numerical” incarnation in the formula of
Lemma 2.7.

Subsequently, we discuss Hilbert modular forms of half-integral weight and their automorphic counter-
parts, so to exploit an adelic setting. To a supersingular or superspecial point s, we associate an Eichler
order Rs and then the so called Gross lattice, that is, a ternary quadratic form Qs attached to s. Since
at least Jacobi, quadratic forms and automorphic forms are allied subjects, and in fact Qs gives rise to a
theta series of weight 3/2. Such theta series were introduced in Gross’ seminal paper [23], and they formed
already a key idea in [15] and similarly in [27] where the authors exploited a subconvexity bound on their
Fourier coefficients. Now, the set of the optimal embeddings previously introduced is in correspondence
with primitive representations of of the discriminant of x by (the adelization of) Qs. Next step, which
was the main technical novelty of [27], consists in the analysis of the Whittaker–Fourier coefficients of the
(automorphic) theta series attached to the genus and the spinor genus of Qs. In particular, we prove that,
under certain conditions, the genus and spinor genus mass, as defined in (3.8), are equal. To prove this,
we make use of some class number formula and of Vatsal’s equidistribution in Lemma 3.16. Moreover, we
also need to adapt to totally real fields some properties of those theta series. To do so, we decided to work
in an autormorphic setting. We thus exploit the beautiful papers of Gelbart–Piatetsky-Shapiro [21] and
[22]: these works develop an automorphic, representation theoretic Shimura correspondence, which can be
viewed as a first case of the theta-correspondence.
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The last crucial ingredient for Theorem A follows from the subconvexity bound of [6] on the Whittaker–
Fourier coefficients of cuspidal automorphic forms of weight 3/2. The ineffectivity of our result is due
to Brauer–Siegel’s lower bound for class numbers. However, this issue might be solved by assuming the
Generalized Riemann Hypothesis or by the (weaker assumption of the) non-existence of Landau–Siegel
zeros. Let F = Q and D be the discriminant of an imaginary quadratic extension of Q with class number
h(D). Then by one of the two assumptions above Hecke showed there is an effective constant c > 0 such

that h(D) > c
√
|D|(log |D|)−1.

Lastly, in Section 4, as a complement of our equidistribution result, we deduce the integral version of
the André–Oort conjecture in arithmetic pencil introduced in [39] in the case of Shimura curves over Q.
While the classical André–Oort conjecture concerns the Zariski topology of Shimura varieties, this variant
considers their integral models, which are defined over Spec(OE), where E is their reflex field, hence the
pencil over the arithmetic base Spec(OE).

The strategy closely follows the lines of [40], where the case of the modular curve Y (1) over Z is
established.

1.1. Notation and Conventions. We list some notations used throughout this work:

• we denote by H the classical Hamilton’s quaternions;
• A denotes the ring of adeles over Q, and Af the finite adeles;
• for a totally real number field F , let O+

F := OF ∩ F+;
• for a quaternion algebra B over F , we denote by Ram(B), the set of places of F where B ramifies;

the same symbol, with f or ∞ subscript, denotes the restriction to finite or archimedean places
respectively;
• for a local field Fv, we denote by F̆v the completion of the maximal unramified extension;
• let GabK denote the abelianization of the absolute Galois group of K;
• for a set X, we denote by C(X,C) the set of continuous functions on it;
• for a group scheme G, we denote its automorphic quotient by [G] := G(A)/G(F );
• we denote by N the absolute norm of a number field, while nr denotes the reduced norm of a

quaternion algebra;
• for any two functions f, g, we use the notations f � g and f = O(g) interchangeably.

Acknowledgments. It is a pleasure to thank Professor Daniel Disegni for his guidance with my doctoral
thesis, which this article is part of. I am also grateful to Zev Rosengarten for useful conversations and
correspondence. This work was supported by ISF grant 1963/20 and BSF grant 201825.

2. Shimura Curves

2.1. Quaternion Algebras and Ramification. For a totally real number field F of degree d over Q,
let B be a quaternion algebra over F . In this section, after imposing some conditions on the ramification
of the quaternion algebra B at some places of F , we associate two curves to B, according to the fact that
B satisfies one of the following conditions:

• there is a unique real place v of F such that Bv = B ⊗ Fv 'M2(Fv), i.e., B is indefinite;
• for every real place Bv is non-split, i.e., B is definite.

2.1.1. Ramification Setting. From now on, let K denote a CM quadratic extension of F , and suppose that
B is split by K, i.e., Kv is a field for every finite place of F where B ramifies. Fix an embedding ρ : K ↪→ B
over F . Let also v be a finite place of F . In what follows we consider the following two situations:

(1) B is ramified at v and v ramifies in K;
(2) B is unramified at v and v is inert in K.

Indeed, this does not rule all the possible cases out. For instance, in (1), the prime v could also be
inert. The geometric interpretation of this case is described in [41, Prop.2.13]. At any rate, at the level of
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the equidistribution both possibilities in (1) would proceed in parallel, so we decided to focus exclusively
on v ramifying in K.

2.1.2. Indefinite Case. We first consider B indefinite at one archimedean place of F , which we denote
by τ1 : F ↪→ R. Then we can fix an isomorphism B ⊗ R ' M2(R) ⊕ Hd−1. This isomorphism induces
a map B× → GL2(R) which gives an action of B× on the conjugacy class of h0, which is isomorphic to
H = C− R, by Möbius transformations.

Let G be the reductive group over Q whose functor of points sends a commutative Q-algebra A to

(2.1) G(A) = (B ⊗Q A)×.

This means that G = ResF/QB
× and there is a real embedding h0 : ResC/RGm → GR with trivial coordi-

nates at τi for i > 2.
For any open subgroup U of G(Af ) which is compact modulo F̂×, we consider

(2.2) San
U := G(Q)\H ×G(Af )/U ∪ {cusps}

whose canonical model is the Shimura curve SU over F . It is a proper and smooth curve over its reflex
field F . Note that the set {cusps} is non-empty if and only if B = M2(Q). If F = Q, then SU is a coarse
moduli space of QM abelian surfaces.
On the other hand, if d > 1, Shimura curves do not have a natural moduli interpretation. Despite so,
by the work of Carayol [7], we have that SU has a finite map to another Shimura curve SU ′ which, if U ′

is small enough, is a moduli space of QM abelian varieties with a U ′-level structure and a polarization
both compatible with the quaternionic multiplication (see [48, Prop.1.1.5]). Since S ′U ′v is a fine moduli

scheme for such abelian schemes over schemes with level structures, there is a universal object of its
moduli problem, called universal abelian surface and denoted by A → S ′U ′v . For each geometric point

x = Spec(E) of A , the fiber Ax is a QM abelian surface as above structure defined over E.
The moduli interpretation yields the remarkable consequence that the Shimura curve has a proper2

regular integral model SU over OF .

2.1.3. Definite Case. Let us now deal with a definite quaternion algebra. For the rest of this work fix a
finite prime ` of F such that B` ' M2(F`). Consider an Eichler order R of level n. An orientation on R
consists of a morphism o? : R ⊗ k` → k?, for ? ∈ {`, `2}, where k? = k` if `|n and k? = k`2 otherwise. We
refer to [5, Sec.1.1] for an exhaustive description of the orientations.

We denote by Cl(B) the set of all conjugacy classes of oriented Eichler orders of level n in B, and we
recall that it can be viewed adelically via the following bijection

(2.3) Cl(B) ' G(Q)\G(Af )/R̂×,

where R̂× denotes the adelization of R and G is the reductive group defined in (2.1) adapted to the definite
setting. By strong approximation in G(Af ), it follows that Cl(B) is finite.

Following [23, p.131], we now attach to B an algebraic curve. Let P be the conic curve over Q whose
functor of points send a commutative Q-algebra A to

P(A) = {x ∈ B ⊗A : x 6= 0, nr(x) = tr(x) = 0}/A×.

We define the Gross curve3 of level R as

XR = G(Q)\P ×G(Af )/R̂×,

where G(Q) = Aut(P) acts by conjugation on P. Given representatives (gi)
r
i=1 of Cl(B) via (2.3), we

define Γi := giR̂g
−1
i ∩G(Q) is a finite subgroup of G(Q). We thus obtain a collection of genus zero conic

2In the modular curves case one needs to add finitely many cusps for properness.
3Also known as definite Shimura curve, as in [5, p.420].
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curves4 Yi = Γi\P defined over Q, and we write the Gross curve as

XR =

r⊔
i=1

Yi.

The set of K-rational points of the conic curve P is identified with Hom(K,B), as explained in [23,
p.131]. By this identification, we obtain that

XR(K) = {(f, [R]) : f ∈ Hom(K,B), [R] ∈ Cl(B)}.
Lastly, since the connected components Yi have genus zero, the Picard Pic(XR) is a free OF -module with
a basis indexed by Cl(B).

2.2. Special Points and Quaternion Algebras.

2.2.1. Indefinite Case. For any F ⊗ Af -embedding τ : K ⊗ Af ↪→ B ⊗ Af , the group τ(K×) acts on the
Shimura curve SU . We thus define the scheme of CM points by (K, τ) as the fixed-point (affine) subscheme

Sτ(K×)
U .

In other words, a point z of SU is a CM point by K if it can be represented by (z0, g) ∈ H ×G(Af ) via
(2.2), where z0 is the unique point fixed by K×. By the work of Shimura, it is a finite subscheme of SU
defined over Kab. By taking the union of Sτ(K×)

U over all pairs (K, τ), we obtain the CM ind-subscheme
of SCM

U . The absolute Galois group of K, which we denote by GK , acts on SCM
U via

σ.(x0, g) = (x0, recK(σ)g)

where recK is Artin’s reciprocity map. If we consider CM points of conductor c, this action factors through
Gal(H[c],K), where H[c] is the ring class field of K of conductor c.

Consider now an order R of B of type5 (n, K) as constructed in [48, Sec.1.5.1] and the corresponding

Shimura curve of level F̂×R̂×. Then for z a CM point by K we consider

End(z) := gR̂×g−1 ∩ ρ(K)

which is an order in K = ρ(K) independent of the choice of g ∈ G(Af ). The conductor of z is defined as
the unique OF -ideal such that

End(z) = OF + cOK .

Moreover, the discriminant of End(z) is of the form Dc2, where D is the discriminant of K relative to F
and c the conductor.

We say that a CM point z corresponding to (z0, g) has an orientation if, for a finite prime v coprime
with c, the morphism g−1ρg is R×v -conjugated to ρ in Hom(OKv

, Rv)/R
×
v .

Lemma 2.1. Let c be coprime with n. Then there are 2ω(n) Galois orbits of CM points of conductor
c, where ω(n) is the number of prime factors of n. Moreover, every such orbit has cardinality equal to
# Pic(Oc).

Proof. Let us recall that the Shimura curve of level R̂× has an action by the Atkin–Lehner group

W = {b ∈ G(Af ) : b−1R̂×b = R̂×}/R̂×

which has 2s elements, for s the number of prime factors of n. This yields an action of W on SCM
U which

preserves the conductor. By the work of Gross [23], the action of Pic(Oc)×W on the set of CM points of
conductor c is free and transitive and the Pic(Oc)-orbits of CM points correspond to sets of oriented CM
points. This implies that there are 2ω(n) ·# Pic(Oc) such points of conductor c, and so we conclude. �

4Which are in general not isomorphic to P1.
5I.e., an order of discriminant n which contains ρ(OK).
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Next description characterizes CM points in terms of an adelic double quotient. Let T be the Q-rational
torus in G.

Lemma 2.2. The set of CM points in SU is in bijection with

T (Q)\G(Af )/U.

Proof. See [47, 5.2.5.2.2]. �

2.2.2. Definite Case. Here we consider the definite case, i.e., special points living on some Gross curve,
whose theory is considerably less convoluted than in the indefinite case.

For any order O of K, we fix an orientation on it by choosing a morphism O` → k? where k? is as in
Section 2.1.3.

A Gross point of conductor c consists of a pair (f,R) where f : K → R is an oriented optimal embedding,
which means that f(K) ∩ R = f(Oc) where Oc is taken up to conjugation by G(Q). Equivalently, Gross
points are the image of

P(K)×G(Af )/R̂×

in XR(K). This immediately implies the K-rationality of Gross points. Let us denote by Gr(c) the set
of Gross points of conductor c. Moreover, a Gross point (f,R) represented by (x, g) ∈ P × G(Af ) has
discriminant D if and only if

f(K) ∩ gR̂g−1 = f(O)

is the image of the order of discriminant D. Thus, Gross points of discriminant D correspond to equivalence
classes modulo R×i of optimal embedding of O ↪→ Ri in each component Yi. We denote the cardinality of
the set of such equivalence classes by h(O, Ri).

Set T to be the Q-rational torus in G. For any Gross point (f,R) ∈ Gr(c) the optimal embedding f
induces, by scalar extension, a map T (A)→ G(A). This gives an action of the Picard group of Oc

Pic(Oc) = T (Q)\T (A)/Ô×c

on Gr(c). By [23, p.133], this action is simply transitive.
Next result recalls how to describe Gross points as an adelic double quotient.

Lemma 2.3. The set of Gross points in XR is in bijection with

T (Q)\G′(Af )/R̂×.

Proof. See [27, Lemma 2.2]. �

2.3. Reductions of Integral Models. In this section we consider the indefinite quaternion algebra B
exclusively.

2.3.1. Universal v-Divisible Group. Let A be a complete Noetherian local ring of residue characteristic p,
and let v be a p-adic place of F . A v-divisible6 group G of height h over A is the colimit of a tower of affine,
finite flat group schemes (Gn)n>1 over A of order pnh such that Gn = Gn+1[vn]. Taking the connected and
étale parts7 of G , denoted by G ◦ and G ét, there is a short exact sequence

0→ G ◦ → G → G ét → 0

which splits if A is a perfect field. Moreover, let us recall that a formal group is a group object in the cat-
egory of formal schemes. Then there is an equivalence of categories between connected v-divisible groups
and formal groups.

We now assume that the level structure decomposes in the form U = Uv · Uv where Uv is sufficiently
small and Uv ' O×Bv

, namely the level structure is maximal at v.

6Also known as Barsotti–Tate.
7Defined just by the of thelatter group schemes Gn.
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The curve SUv
carries a universal v-divisible OBv

-module G which comes from the v-divisible group
A [v∞] by taking the pull-back of A via the finite map SUv

→ S ′U ′v . To describe G , choose an auxiliary

quadratic field F ′ as in [48, p.33] which is split at v and fix an isomorphism f : OF ′v ' OFv
⊕ OFv

. We
therefore define

G := f−1(0, 1)A [v∞].

Let Oun be any unramified quadratic extension of OFv
contained in OBv

. By [48, Prop.1.2.4], we have that
G is a special v-divisible OBv

-module, i.e., the induced action of OBv
on Lie(G ) := Lie(G ◦) makes Lie(G )

a locally free sheaf over OS ⊗OFv
Oun of rank 1. Moreover, G is étale away from v.

2.3.2. Unramified Case. Assume that B is unramified at v, and fix an isomorphism j : OBv
' M2(Ov).

Let also be the level structure U as in Section 2.3.1. By [7] (and by [32, Chapt.13] if F = Q), we have
that SUv

has good reduction.
Let s be a geometric point of the special fiber of SU at v. Since we have fixed j, every OBv

-module M
can be uniquely decomposed via idempotents as

M = M1 ⊕M2 :=

[
1
]
M ⊕

[
1

]
M

where the OFv
-modules M1 and M2 are isomorphic. Therefore we can write G as

G = G 1 ⊕ G 2

with the summands are isomorphic as v-divisible OFv
-modules.

Let Fv/OFv
denote the constant v-divisible group of height 1 given by the colimit of (v−nOFv

/OFv
),

which is étale. Since the v-divisible OFv
-modules G i

s have height 1 and dimension 2, they are isomorphic
to one of the following objects:

(1) the direct sum X1 ⊕ Fv/OFv
, where X1 is the unique8 formal OFv

-module of height 1, so that s is
called ordinary ;

(2) to the unique formal OFv
-module of height 2 and dimension 1, so that s is called supersingular .

In other words, G i
s are supersingular if G i

s = G ◦, while they are ordinary if the étale part G ét is non-trivial.
Let k be the algebraic closure of the residue field of F at v. We denote by S ss

U,k the finite étale subscheme

of supersingular points over Spec(k). We will also refer to it as the supersingular locus. The complement
of this finite set of points is naturally called the ordinary locus.

Let us recall that supersingular points are mutually isogenous, ad that, given such a point s, its endo-
morphism ring End(s) ⊗ F is the quaternion algebra B′ obtained by switching invariants at τ and v in
B.

Geometrically, the irreducible components of special fiber SU,k are smooth connected curves9 and they
intersect each other transversally only in the supersingular locus, so that supersingular points corresponds
to the singularities of the special fiber. We refer to [7, 9.4.4] for more details.

Next Lemma gives an adelic description of the supersingular points.

Lemma 2.4. The set of supersingular points in SU,k is in bijection with

G′(Q)\G′(Af )/U ′,

where U ′ = O×B′v · U
v.

Proof. See [47, p.259]. �

8Therefore X1 coincides with the geometric generic fiber of the Lubin-Tate formal group L T , i.e., L T |Spec(Fv)
.

9Never isomorphic to P1.
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2.3.3. Ramified case. Assume that B is ramified at v and that Uv is maximal. In this setting, by the work
of Drinfeld [14] we have that G = G ◦, i.e., G is a formal group.

Let B′ be the quaternion algebra obtained by changing the invariant of B at v and τ , i.e., B′ is definite
and unramified at v. Consequently, we denote by G′ the reductive group whose functor of points is given
by G′(A) = (B ⊗Q A)×, for a Q-algebra A. We then fix an isomorphism G′(Af ) 'M2(Fv) ·G(Avf ).

Consider the formal scheme Ω̂ over OFv
obtained by successive blow-ups of rational points on the special

fiber over k of P1, whose generic fiber is the rigid-analytic Drinfeld plane Ω over Fv such that

Ω(Cv) = P1(Cv)− P1(Fv).

We denote by ŜU the completion of SU along its special fiber at v, and assume that Uv is maximal,
i.e., Uv ' O×Bv

and that Uv is sufficiently small. A wonderful result of Cerednik and Drinfeld gives the
following uniformisation

(2.4) ŜU ' G′(Q)\(Ω̂⊗̂ŎFv
)× Z×G′(Avf )/U.

For a detailed discussion of the Cerednik-Drinfeld uniformisation, we invite the reader to see [3].
Let X be the unique (up to isogeny) formal module of height 4 over kv. By Drinfeld moduli interpretation

[3, p.107], Ω̂⊗̂ŎFv
can be viewed as the moduli space of the (isomorphism classed of the) following objects:

• a formal special OBv -module X of height 4;
• a height zero quasi-isogeny % : X→ Xkv .

Note that, since this moduli interpretation is proved as usual via the representability of a moduli problem,
this quasi-isogeny excludes a stacky situation. For a detailed description of the special fiber, see [41].

Let s be a geometric point of the special fiber of SU at v. Then by (2.4) and Drinfeld moduli inter-
pretation, s corresponds to a formal OBv -module Xv. Then s is supersingular if Xv is isogenous to the
direct sum of two formal OFv

-modules Yv of height 2 and dimension 1 such that End(Yv) ' OBv
. It is not

difficult to see, as in [41, Lemma 2.9], that every geometric point in this special fiber is supersingular.
Nonetheless, there is a distinguished set of points encoding arithmetic and geometric properties in a manner
similar to the supersingular locus in the unramified case. A geometric point s is called superspecial if the
associated formal OBv -module Xv is isomorphic to Yv ⊕ Yv; this isomorphism is unique up to GL2(OBv )-
conjugation. For such a point s, its endomorphism ring is End(Xv) 'M2(OBv

). The OBv
-action on X is

given by
ι : OBv

↪→ End(Xv) 'M2(OBv
).

The finite subscheme Ŝ ssp
U,k over Spec(k) consisting of superspecial points is thus called the superspecial

locus.
Geometrically, the irreducible components of the special fiber of Ω̂ are projective lines P1

k intersecting

each other in the superspecial locus, which does is in bijection with the ordinary double points of ŜU,k.

Thus the complement of these singularities is the smooth locus of ŜU,k, which we denote by S sm
U,k. For

more details on this smooth locus, see [41, Sec.2].
As for the supersingular points in Lemma 2.4, also superspecial points admit an adelic interpretation.

Lemma 2.5. We have that the set of superspecial points on ŜU,k corresponding to the class of a fixed ι
are in bijection with

G′(Q)0\G′(Avf )/Uv

where G′(Q)0 are the elements in the centralizer of ι(OBv ).

Proof. See [47, Lemma 5.4.5]. �

2.3.4. Eichler Orders associated to Supersingular and Superspecial Points. Next construction is a variant
of [23, pp.171-172] including the ramified setting.

Let v be a non-archimedean place of F and consider the special fiber Sv. Let also x ∈ SCM. As usual,
we consider s, namely the reduction of x modulo v, in the following cases:
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(1) v unramified in B and inert in K;
(2) v ramified in B and ramified in K.

In the unramified case, i.e., for s in the supersingular locus, then we set Rs = End(s) as in [27, Sec.4.1].
On the other hand, if v is ramified in B, i.e., for s in the superspecial locus, we construct the desired

Eichler order Rs as follows.
Let us consider now the ramified case with s superspecial. Let Xk correspond to the superspecial point

s in Ω̂k, whose quaternionic action is given by ι : OBv ↪→M2(OBv ). Consider the maximal orders

Rι,v := Endι(OBv )(X) ⊂M2(OFv ) = EndOBv
(X)

where M2(OFv ) has rank 4, and

R̂vf ⊂ B̂vf := B ⊗ AvF,f .

Let B′ be the coherent10 quaternion algebra over AF,f and consider the Eichler order

R̂ := Rι,v × R̂vf ⊂ B′.

There exists a unique quaternion algebra over B′ such that B′ ' B′ ⊗ AF,f and R̂ ⊂ B′ ⊗ AF,f so that

Rs := R ⊂ B′

and B′ is ramified at τ and not ramified at v. Note that this change of invariants takes place at Rι,v, the
centralizer of the action of ι(OBv

).

2.3.5. The Reduction Map. Let v̄ be a place of Kab above v, and denote by Ov̄ and kv̄ its ring of integers
at v̄ and its residue field respectively.

The Shimura curve SU is proper over Spec(OFv ) both in the unramified and ramified cases, and so by
the valuative criterion for properness we have that

SU (Kab) = SU (Kab) ' SU (Ov̄)→ SU (kv̄).

Since CM points are defined over Kab, we obtain the following reduction map

redv : S CM
U −→ SU (kv̄).

Lemma 2.6. The reduction of CM points in the special fiber modulo v lies in

(1) the supersingular locus, if Bv is unramified and v is inert or ramified in K;
(2) the superspecial locus, if Bv is ramified and v ramifies in K;
(3) in the smooth locus, if Bv is ramified and v is inert in K.

In symbols,

redv(SCM) ⊆


S ss
k , for Bv 'M2(Fv), v inert or ramified in K;

S ssp
k , for Bv ramified, v ramified in K;

S sm
k , for Bv ramified, v inert in K.

Proof. See [9, Lemma 3.1] for Bv 'Mv(Fv) and [41, Prop.2.17] for the ramified case. �

We now conclude by writing down the three sequences of measures whose limit will give us our equidis-
tribution result.

Let the geometric point s in the special fiber at v lie in

• the supersingular locus, for Bv 'M2(Fv);
• in the superspecial locus, for Bv ramified.

10This terminology was introduced in [46, p.3].



EQUIDISTRIBUTION OF CM POINTS ON SHIMURA CURVES AND TERNARY THETA SERIES 11

For ? ∈ {ss, ssp}, we define the following probability measures

(2.5) µ?D,c(s) =
1

#ΓD,c

∑
x∈ΓD,c

redv(x)=s

1s(x),

where µss
D,c is defined over S ss

U,k and µssp
D,c over Ŝ ssp

U,k .
Lastly, let s be a geometric point in the special fiber at v, for Bv ramified, whose corresponding formal

OBv
-module is not superspecial, so that it is supersingular, and it lies on one of the components {c1, . . . , cn}

of the smooth locus S sm
U,k. Exactly as above in (2.5), we then obtain the analogous measure µssp

in,D,c.

2.3.6. Liftings of Reductions Maps. Consider the two following maps

π? : Gr→ S ?
k

where once again ? ∈ {ss, ssp}. By Lemmata 2.3, 2.4 and 2.5, the π?’s are the natural projections defined
by

T (Q)\G′(Af )/R̂′
×

G′(Q)\G′(Af )/R̂′
×

G(Q)0\G′(Af )/R̂′
v,×

.

πss πssp

The following construction allows to move from the reduction maps to the projections π?.
For Bv unramified, by [8, Sec.3.2] there is a GK-equivariant lifting θv such that the following diagram

SCM Gr

S ?
k

θv

redv π?

is commutative. On the other hand, for Bv ramified, then the construction of the lifting θv follows almost
verbatim the unramified case.

Let now R be an Eichler OF -order in B given by the maximal orders R′ and R′′, and consider the

Shimura curve of level F̂×R̂×. By the interpretation of CM points as an adelic doubly quotients in Lemma
2.2 we obtain the two maps

T (Q)\G(Af )/R̂×

T (Q)\G(Af )/R̂′
×

T (Q)\G(Af )/R̂′′
×
.

Given a z ∈ SCM, we denote its image under these maps as z′ and z′′ respectively. For z = [g], then

K ∩ gR̂′
×
g−1 is an OF -order in K whose conductor, denoted c(z′), is an integral OF -ideal coprime to

Ramf (B). Symmetrically, c(z′′) is the conductor coming from R′′. We thus obtain the (coarse) conductor
map

c : z ∈ SCM 7→ c(z) := c(z′) ∩ c(z′′).

In a similar way, by Lemma 2.3 we can define the analogous conductor map c′ for G′.
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Lemma 2.7. Suppose that the conductor c is coprime to both v and n, and that v is coprime to n. Let s
be a geometric point in the special fiber at v, which lies in the supersingular locus if Bv is unramified and
in the superspecial locus if Bv is ramified. Accordingly, let Rs as in Section 2.3.4. Then we have

µ?D,c(s) =
h(OD,c, Rs)

2ω(n)+ε?# Pic(OD,c)
,

for ? ∈ {ss, ssp} and εss = 1 and 0 otherwise.

Proof. We recall that h(OD,c, Rs) denotes the number of equivalence classes modulo R×s of optimal em-

beddings OD,c ↪→ Rs. By Lemma 2.1 we have that there are 2ω(n) Galois orbits of CM points of conductor
c and discriminant D, and that each such orbit has cardinality # Pic(OD,c).

By [8, Cor.3.2], we have that CM points of conductor c and discriminant D reducing to s are in bijection
with the equivalence classes of the aforementioned optimal embeddings. In particular we have

(2.6) 2ε? ·#(c−1(c) ∩ red−1
v (s)) = #(c′−1(c) ∩ π−1(s))

where in the superspecial case εssp = 0 by the ramification of v in K following [8, Sec.3.4]. By Lemma 2.1,
we obtain

h(OD,c, Rs) = 2ω(n)+ε? ·#(red−1(s) ∩ ΓD,c).

Since the summation in (2.5) gives #{z ∈ ΓD,c : redv(z) = s}, this shows that

µ?D,c(s) =
#{z ∈ ΓD,c : redv(z) = s}

#ΓD,c
=

h(OD,c)

2ω(n)+ε?# Pic(OD,c)
.

�

Remark 2.8. In [8, Thm.3.1], the lifting θv does not induce a bijection, but rather a κ-to-1 surjection,
where κ has the cardinality of the Galois group Gal(K[c]/K[cv]) of the ring class field K[c] as a factor,
where cv is the prime-to-v part of c. Therefore, our hypothesis that c is coprime to v implies the triviality
of such a Galois group. The remaining factor of κ, which grosso modo is the cardinality of the set of K×v -
orbits of pairs of vertices of the Bruhat-Tits tree of PGL2(Fv), is again 1 by our coprimality hypothesis
combined with [8, Lemma 2.1(i)].

3. Equidistribution and Quadratic Forms

3.1. Automorphic Forms and Representations of Half-Integral Weight.

3.1.1. Hilbert Modular Forms of Half-Integral Weight. In this section we begin with some basic notions
on Hilbert modular forms of weight k = (k1, ..., kd) ∈ 1

2Z
d
>0. We set Hom(F,R) = {τ1, . . . , τd} and denote

z = (z1, . . . , zd) ∈H d. We invite the reader to go through [43] as a basic reference.

Remark 3.1. In what follows the reductive group GL2 has nothing to do with the quaternionic setting
of the Shimura curve (2.2), since the equidistribution result we aim to makes an auxiliary use of these
automorphic forms.

Let k be as above and let m ∈ Zd>0. Let also U be a compact open subgroup of GL2(Af ). A complex

Hilbert modular form of weight k, level U , character ω, is a (non necessarily holomorphic) function

f : GL2(AF )→ C

such that:

(1) for all g ∈ GL2(A), γ ∈ GL2(F ), h ∈ U ,

f(γgh) = Jk(h∞, z)f(g)

where Jk is the automorphy factor defined combining [43, 3.1b p.777] and [43, 1.4 p.770] and
h∞ is the archimedean part of h;
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(2) there is a Whittaker–Fourier expansion

(3.1) f(g) = Cf (g) +
∑
δ∈F×

Wf

([
δ

1

]
g

)
where Cf (g) is a constant term, while

Wf (g) =

∫
A/F

f

([
1 x

1

]
g

)
ω(−x)dx

where dx denotes the obvious Haar measure induced by the adelic one.

We say that f is cuspidal if Cf (g) is identically zero.
Let us denote by e(x) the standard additive character of AF , i.e., e(x) =

∏
v ev(xv) where ev(xv) =

exp(2πi{trFv/Qp
(xv)}p), where {a}p is the p-fractional part of a ∈ Qp. If f is holomorphic they vanish

unless y∞ > 0. If this is the case then the Whittaker functions have the following expression

Wf

([
y x

1

])
= ã(f, y)e∞(iy∞)e(x)

involving a function ã(f, y) of y ∈ A×f which are called Whittaker–Fourier coefficients of f . For a finite

idele y = (yv)v ∈ A×F,f , then one classically obtain a fractional ideal

(3.2) y = yÔF ∩ F =
∏
v

pvalv(yv),

where p corresponds to the finite place v of F . The Whittaker–Fourier coefficients of f can be rewritten
in terms of a function a(f, y) on the fractional ideals of F vanishing on the non-integral ideas. For a more
detailed discussion, see [48, p.71] and [38, Sec.4.1.2].

We denote by Mk(U, ω) the space of holomorphic Hilbert modular forms of level U and character ω,
and by Sk(U, ω) its subspace of cuspidal forms.

Let now the map a : GL1(AF,f ) → GL2(AF,f ) be defined by a 7→
[
a

1

]
. We consider, following [12,

(2.1.3)], the q-expansion map on Mk(U, ω)

(3.3) f 7→ (δ → ã(f, δy)).

This map is injective, by the q-expansion principle (see [12, Prop.2.1.1]), for δy ∈ a−1(U).

3.1.2. Metaplectic Covers. In this section we introduce a 2-fold cover of GL2, as in [22]. Consider the local

metaplectic group S̃L2 given by

S̃L2(Fv) =

{
SL2(Fv)× Z/2Z, for v archimedean

the non-split central extension of SL2(Fv) by Z/2Z, otherwise.

which is a double cover of SL2. Note that the central extension of SL2(Fv) is determined by the non-trivial
element of the continuous group cohomology H2

cont(SL2(Fv),Z/2Z) ' Z/2Z.
The group {[

a
1

]
: a ∈ F×v

}
gives an action of F×v on SL2(Fv) by conjugation, which uniquely lifts to an automorphism of S̃L2(Fv).

We denote by G̃L2(Fv) the semi-direct product of S̃L2(Fv) and F×v . Hence this locally compact group fits
in the following short exact sequence

1 −→ Z/2Z −→ G̃L2(Fv) −→ GL2(Fv) −→ 1.

The center of G̃L2(F×v ) is Z2 × Z/2Z, where Z =

{[
a

a

]
: a ∈ F×v

}
.
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Globally, the metaplectic group is defined as the quotient

G̃L2(AF ) =

′∏
v

G̃L2(OFv
)/Z̃,

where Z̃ = {
∏
v εv ∈

∏
v Z/2Z | εv = 0 for an even number of v}.

We conclude this section by introducing a dictionary between certain Hilbert modular forms and auto-

morphic representations of G̃L2(A), following [38] and [20].
We say a cusp form f is primitive is it is a newform, an eigenform for all Hecke operators as defined in

[38, Sec.4.1.3], and normalized with conductor equal to 1.

Lemma 3.2. Let ω be a character of (OF /n)× and let ω̃ denote its adelization, i.e., a character of A×F /F×

induced from ω. Let also Di be the discrete series representation of G̃L2(R) of lowest weight ki ∈ 1
2Z with

central character x 7→ |a|ki . We have a bijection primitive cusp Hilbert modular forms
of weight k = (k1, . . . , kd) ∈ 1

2Z
d,

level n, nebentypus ω

←→
 cuspidal automorphic representations of G̃L2(AF )

of conductor n, central character ω̃
whose representation at infinity is ⊗nj=1Dkj−1

 .

Proof. In view of the metaplectic theory developed in [20], the proof consists of an adaptation of [38,
Thm.1.4], so we just summarize the above correspondence. In particular, at the archimedean places, the
result follows from [20, Sec.4.1] which consists of the metaplectic counterpart of Langlands’ classification
for GL2(R).

Given a primitive Hilbert cusp form f of half-integral weight k, we consider the space Hf spanned by

right G̃L2(AF )-translations of f . We thus obtain a representation Π(f) on Hf which occurs in the regular
representation on the cusp forms. The representation Π(f) is irreducible; this can be proved verbatim as
in [38, Thm.4.7].

On the other hand, let Π be a cuspidal automorphic representation as in the left-hand side of the
bijection and let VΠ be its representation space. The Whittaker model of Π is isomorphic to VΠ and for
specific choices of vectors in the local Whittaker model of Πv one can determine uniquely an element f in
VΠ giving the desired Hilbert cusp form. �

3.1.3. Weil Representations. Let ψv denote the local standard additive character, and ψ =
∏
v ψv the

adelic additive character on AF /F . For each v, let here δv ∈ Fv be the conductor of ψv. For v finite,
δvOFv

is the maximal fractional ideal over which ψv is trivial. On the other hand, for v a real place,
ψv(x) = exp(2πiδvx). Moreover, we have that the absolute value of δ :=

∏
v δv ∈ A×F equals the discrimi-

nant of F ; in symbols, |δ| = dF .

Let S(Fnv ) denote the space of C-valued Schwartz-Bruhat functions. For f ∈ S(Fnv ), we define its Fourier
transform as in [20, p.36] by

f̂(x) =

∫
Fn

v

f(y)ψv(2xy)dy

where dy is the normalized Haar measure so that
̂̂
f (x) = f(−x).

Let Q be a quadratic form on Fn, and let γv be a eight root of unity, and γv,a its translate by a ∈ F×v .

The local Weil representation r(ψv) is the unique representation of S̃L2(Fv) that can be realized on S(Fnv )
by the following formulae:

• r(ψv)
[

1
−1

]
f(x) = γv f̂(x);

• r(ψv)
[
1 t

1

]
f(x) = ψv(tQ(x))f(x) for t ∈ Fv;
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• r(ψv)
[
a

a−1

]
f(x) = |a|1/2v

γv
γv,a

f(x);

• r(ψv)(ε)f(x) = εf(x) for ε is a second root of unity.

Note that these formulae uniquely define the Weil representation via the Bruhat decomposition of SL2.

Globally, for a totally real field F and a quadratic space (V,Q) over F , consider the non-trivial character
ψ : AF /F → C×. Then the Weil representation is obtained as the restricted tensor product of the local
Weil representations r(ψv)’s.

Consider now the quadratic space (V,Q) over Fv, for Q a n-ary form. By [20, Ex.2.21] each quadratic
form Q corresponds to a Weil representation. Whenever in need to emphasize this we will denote the Weil
representation corresponding to Q by rQ.

3.1.4. Theta-representations. We now focus on the unary case. The local Weil representation r(ψv) decom-
poses as a direct sum of two irreducible subrepresentations on the subspace even and odd Schwartz-Bruhat
functions. Thus, for χv character of F×v , we can tensor with the even or odd part of r(ψv), according to

the parity of χv, and inducing this representation to S̃L2(Fnv ) we obtain an irreducible admissible repre-
sentation r(χv) independent of ψv, which is unramified whenever χv is unramified, i.e., for all but finitely
many v.

We now extend r(ψ) to a representation of G̃L2(Fnv ), so to remove the dependence on ψv.

Consider the pullback of {g ∈ GL2(Fnv ) : det(g) ∈ (F×v )2} in G̃L2(Fnv ) taking the form

G̃∗ := S̃L2(Fv) o
{[

1
a2

]
: a ∈ F×v

}
.

We then extend r(ψv, χv) to G̃∗ by setting

r(ψv, χv)

[
1

a2

]
f(x) = χv(a)|a|−1/2

v f(a−1x).

Moreover, we have that r(ψv, χv) is an irreducible, admissible representation of G̃∗.

Inducing up r(ψv, χv) to G̃L2(Fnv ) produces a representation r(χv), which is irreducible and admissible
and independent of ψv (see [21, 1.3, p.150]).

We conclude by the global setting. Recall that an automorphic representation of half-integral weight

is an irreducible admissible representation of G̃L2(AF ) which is isomorphic to a subrepresentation of the

space of automorphic forms on G̃L2(AF ).
For every character χ of A×/F×, the (global) theta-representation is

r(χ) = ⊗′vr(χv),

namely the restricted tensor product of the local Weil representations. This gives an automorphic repre-
sentation of half-integral weight. Moreover, if there exists at least a place v of F such that χ is odd (i.e.,
χv(−1) = −1), then r(χ) is cuspidal (see [21, Prop.8.1.1]).

Let us introduced two important technical definitions. We say that an irreducible admissible represen-

tation πv of G̃L2(Fv) is v-distinguished if its Whittaker model, which always exists, is unique. Globally,

an irreducible admissible representation π = ⊗′πv of G̃L2(AF ), is distinguished if it is v-distinguished at

all places v. An automorphic representation of G̃L2(AF ) is called genuine if it does not factor through
GL2(AF ).

Lemma 3.3. There is a bijection{
Hecke characters of F

}
←→

{
genuine, distinguished, automorphic

representations of G̃L2(AF )

}
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attaching to every Hecke character χ the theta-representation r(χ).

Proof. See [21, Thm.A p.147]. �

Remark 3.4. We will make extensive use of the fact that r(χ) generalizes the construction that associates
to a Dirichlet character χ on Z/NZ the classical theta series

θ(z, χ) =
∑
n>1

χ(n)nqn
2z.

It is well known that this gives a primitive modular form of half-integral weight, level 4N2 and character
χ. Moreover, for t squarefree we have that the subspace U(N,χ) of cuspidal modular form of weight 3/2
whose Shimura lift is not cuspidal is spanned by θ(z, χ)’s (see, for instance, [24, p.365]).

3.1.5. Eisenstein Series. Let B denote the parabolic group of GL2, i.e., its Borel subgroup, with Levi
decomposition B = NM for N being the unipotent subgroup and M the Levi subgroup. Denote also by
GL2(AF )1 the element of GL2(AF ) whose determinant has norm 1, and by M(AF )1 the matrices in the
Levi subgroup whose entries are of norm 1.

For ϕ ∈ C∞c (N(AF )M(AF )\GL2(AF )1) we define the pseudo-Eisenstein series as

Ψ(ϕ, g) =
∑

γ∈B(F )\GL2(F )

ϕ(γg).

Note that Ψ(ϕ, g) is locally finite11, so it converges and defines and element of C∞c [GL2(AF )1] (see [19,
2.7.1]).

Let now χ be a character of M(F )\M(AF )1. Note that any character of [M(AF )1] is of the form

νsχ where νs :

[
δ(y)

1

]
7→ |y|s for δ : (0,∞) → A×F is the diagonal embedding into the archimedean

component of the ideles by δ(y) = (. . . , y
1
dv , . . . ) with dv the local degree at v. We thus consider the

following unramified principal series representation of GL2 given by parabolic induction

Is,χ = {f ∈ C∞c (N(AF )M(F )\GL2(AF )1) : f(nmg) = (νsχ)(m)f(g) for all n ∈ N(AF ),m ∈M(AF )}.

The Eisenstein series is defined as

E(f, g) =
∑

γ∈B(F )\GL2(F )

f(γg),

for f ∈ Is,χ. Note that the Eisenstein series is not a L 2-function12, while the pseudo-Eisenstein series is.
Moreover, the pseudo-Eisenstein series can be expressed in terms of Eisenstein series by integral converging
uniformly absolutely on compacts in GL2(F )\GL2(AF )1. For the pointwise formula, see [19, Thm.2.11.1].

3.1.6. Automorphic Shimura Lifting. In the local case, we have that an irreducible admissible representa-
tion πv of GL2(Fv) is the local Shimura image of πv, in symbols, Shi(πv) = πv if

• for a ∈ F×v , we have

ωv(a) = ωv(a
2),

where ωv, ωv are the central characters of πv and πv respectively;
• for any character χ of F×v , equalities between automorphic L-functions and ε-factors hold respec-

tively as in [22, Sec.7.1].

11I.e., for g in a fixed compact of GL2(AF ), the sum defining Ψ(φ, g) has only finitely many summands.
12The obstruction to this consists of the constant term.



EQUIDISTRIBUTION OF CM POINTS ON SHIMURA CURVES AND TERNARY THETA SERIES 17

The Shimura lift of π, if it exists, is unique13. For a L-functions-free approach to the Shimura lifting,
see [16, Sec.5].

As usual, we define the global Shimura lifting by putting the local pieces together. Let π = ⊗′vπv be an

irreducible admissible representations of G̃L2(AF ). We say that the irreducible admissible representation
π of GL2(AF ) is the Shimura image of π, in symbols, Shi(π) = π, if, for every place v, the same holds
locally, i.e., Shi(πv) = πv.

Let now χ =
∏
v χv be a Hecke character of F , and consider the case π = r(χ). By [22, Thm.15.1] we

obtain that Shi(r(χv)) is 1-dimensional and unramified for almost every place v, and so

(3.4) Shi(r(χ)) = ⊗′v Shi(r(χv))

is automorphic but not cuspidal. In particular, Shi(π) is cuspidal if and only if π is not in the image of
the correspondence of Lemma 3.3.

In the archimedean case F∞, then π∞ is a discrete series representation of lowest weight k/2 and so
Shi(π∞) corresponds to a discrete series representation of lowest weight k − 1 (see [20, Prop.4.8]).

Lastly, we extend the Serre–Stark theorem (and the considerations of Remark (3.4)) to this automor-
phic setting as in [21]. This means that the theta representations r(χ)’s exhaust certain automorphic
representations of weight 1/2, which are defined to be such that there exists one archimedean place such
that π∞ is the even part of the Weil representation.

Lemma 3.5. Suppose that π is a cuspidal representation of G̃L2(AF ) of weight 1/2. Then there exists a
Hecke character χ of F such that π = r(χ).

Proof. This follows as a consequence of the surjective part of Lemma 3.3 and the Shimura lift. �

3.1.7. Langlands Spectral Decomposition. In this section we mainly follow [2] and [34] as references.
Let L 2[GL2] denote the Hilbert space of functions on [GL2] that are square-integrable with respect

to the natural measure, and denote by R the right regular representation of GL2(AF ) on L 2[GL2]. This
representation is isomorphic to the completion of a discrete sum of unitary irreducible representations of
GL2(AF ).

Consider GL2(AF )1 = {g ∈ GL2(AF ) : |det g|A = 1} where | · |A is the adelic norm. Denote by L the
space L 2(GL2(F )\GL2(AF )1)). We want to introduce the spectral decomposition of L under R.

Let us introduce the discrete spectrum of L which we call Ldisc. It is defined as a Hilbert sum of
irreducible subspaces of L , i.e., the closed subspace generated by the irreducible subrepresentations of
GL2(AF )1 in L . Thus Ldisc is the part of L 2[GL2(AF )1] whose spectral decomposition looks like the
decomposition of R. The complement of Ldisc in L is called the continuous spectrum, and denoted by
Lcont.

Let B be the Borel subgroup of GL2 and N its unipotent subgroup. Consider the square-integrable
function on [N ] = N(AF ) ∩GL2(F )\N(AF ) defined for almost all x ∈ GL2(AF )1 as

n 7→ ϕ(nx)

for ϕ ∈ L .
We define the constant term along B the function ϕB defined as

ϕB(x) =

∫
[N ]

ϕ(nx)dx,

where dx is the Haar measure on [N ] ' F\AF . The function ϕ is said to be cuspidal is its constant
term along B vanishes almost everywhere. We thus define Lcusp to be the subspace of cuspidal functions

13Moreover, as suggested by its notation, it does not depend on ψv , while the ε-factor does.
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ϕ ∈ L . It can be decomposed as the Hilbert sum of unitary irreducible representations of GL2(AF )1 with
finite multiplicities14.

Next Lemma yields a construction of the orthogonal complement of Lcusp in L .

Lemma 3.6. The L 2-closure of the set of pseudo-Eisenstein series spans the orthogonal complement of
Lcusp.

Proof. See [19, 2.7.2]. �

The orthogonal complement of Lcusp in Ldisc is called the residual spectrum, and denoted by Lres. It
is obtained by residues of Eisenstein series. In our situation we have that Lres decomposes as the direct
sum of χ ◦ det, for χ ranging among the characters of A1

F /F .

Proposition 3.7. We have the orthogonal decomposition

(3.5) L = Lcusp ⊕Lres ⊕Lcont.

Proof. This statement follows from [34, Thms 2.10.3, 2.10.4] and [34, Prop. 2.5.10]. �

3.2. Ternary Theta Series.

3.2.1. Ternary Quadratic Forms. Let V denote a 3-dimensional vector space over F . An OF -valued qua-
dratic form Q over OF is primitive if the ideal generated by its OF -values is OF . Moreover Q represents
δ if δ ∈ Q(OF ). We also denote the orthogonal group of a quadratic space (V,Q) by O(V ), which consists
of the invertible linear transformations L ∈ End(V ) such that Q(Lv) = Q(v) for all v ∈ V . Moreover,
rotations form the special orthogonal group SO(V ), i.e., isometries of determinant 1. We also recall that a
non-zero vector v is called anisotropic if Q(v) 6= 0. We also say that Q is positive definite if Q represents
only positive values. For such a form Q, essential to our study are the representation numbers

r(Q, δ) := #{x ∈ O3
F : Q(x) = δ}.

Note that assuming the positive definiteness is essential, since it ensures the finiteness of the representation
numbers.

We can now define the theta series of Q and its Fourier expansion. For δ ∈ F , we denote by qδ :=

exp(2πi
∑d
i=1 τi(δ)zi).

Let Q be a non-degenerate15 positive definite ternary quadratic form on F 3. Then

(3.6) θQ(z) =
∑
v∈O3

F

qQ(v) =
∑
δ∈F

r(Q, δ)qδ

is a Hilbert modular form of weight 3/2 for SL2(OF ). See [19, p.154] or [43, Sec.4] for a proof.
From now on, let B0 denote the set of trace zero element in the quaternion algebra B. To B, one can

associate the 4-dimensional quadratic space (V,Q) = (B,nr).
As already hinted in Section 3.1.3, we make clear that the cases of interest for the present work are the

following:

• (V,Q) = (B0, Qs);
• (V,Q) = (F,U);

where U is the unary form U(x) = x2 and Qs is the ternary form as defined in Section 3.2.2.

14In fact, its multiplicities are either 0 or 1.
15I.e., detQ 6= 0.
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3.2.2. Ternary Quadratic Forms and Eichler Orders. The constructions of the Eichler orders attached to
geometric points s in the special fiber of the Shimura curve as in Section 2.3.4 provide the Gross lattice

Λs := (2Rs + OF ) ∩B′0

and the ternary quadratic forms

Qs : (2Rs + OF ) ∩B′0 −→ F,

defined by Qs(b) = nr(b).
Notice that, since B′ is ramified at τ1, then Qs is positive definite.

Let us now denote by Λs the domain of Qs. Extending the scalars by AF,f , we obtain the adelization
of Qs

Q̂s : Λs ⊗ AF,f −→ AF,f .
For δ ∈ A×F,f , we consider the following representation numbers

r(Qs, δ) = #{x ∈ Λs ⊗ AF,f : Q̂s(x) = δ mod Ô×F }.

Let (V,Q) denote a quadratic space over F with a symmetric, bilinear form β, and let (ei)
d
i=1 be a

F -basis for V , and consider the d× d-matrix M = (β(ei, ej))
d
i,j=1. Then the discriminant of the quadratic

form Q over F is defined as the coset DQ = detM · F×,2 in F×/F×,2.

Lemma 3.8. Suppose that 2 is inert in F . Let n be the level of Rs. The discriminant DQs of the quadratic
lattice Λs is equal to the 4n2v2.

Proof. Let us begin with the case of a place v of F such that v 6= `. Let $v be the uniformizer of OFv
.

Denote by n the v-adic valuation of n,so that Rs,v := Rs ⊗ OFv is a Eichler order of level $n
v . We thus

have

Rs,v =

[
OFv OFv

$n
vOFv OFv

]
and consequently

Λs,v := Λs ⊗ OFv =

{[
a 2b

2$n
v c −a

]
: a, b, c ∈ OFv

}
.

Hence, by computing the determinant, the local quadratic form Qs,v is

(a, b, c) 7→ −a2 − 4$2n
v bc.

This shows that the contributions to the determinant of Qs are{
$2n
v , if v6 | 2OF

4$2n
v , otherwise.

Consider now the case v = `. If v 6= 2OF , then Rs,v is the unique maximal order of the unique
quaternion algebra, with OFv

-basis (1, i, j, k) such that i2 = −$v, j
2 = −1, k2 = −1 and k = ij = −ji.

Thus Λs,v has a basis (2i, 2j, 2k) amd we obtain the diagonal form

Qs,v(a, b, c) = 4$va
2 + 4b2 + 4$vc

2

whose determinant is 64$2
v, so contributing by $2

v to the discriminant of Qs.
On the other hand, if v = 2OF , then by [23, pp.145,177], the local Eichler order is isomorphic to the unique
maximal order and for i2 = j2 = k2 = −1 and k = ij = −ji we have

Λs,v = {ai+ bj + ck : a ≡ b ≡ c mod v}.

Therefore we have

Qs,v(a, b, c) = −(3a2 + 4ab+ 4ac+ 4b2 + 4c2),

whose corresponding matrix has determinant 16, i.e., it contributes 4`2. �
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Let r(Qs, δ) be the number of representations of δ ∈ A×F by Q̂s. We introduce, following [26], the

Kohnen plus space M+
3
2

(U) as the subspace of Mk(U) whose forms f have Fourier coefficients a(f, δ) = 0,

for δ ∈ A×F , unless δv is congruent to a square modulo 4OFv for almost all v, i.e., there exists yv ∈ OFv

such that δv ≡ y2
v mod 4OFv for almost all v.

Lemma 3.9. The Gross theta series

(3.7) θQs
=
∑
β∈Λs

qQs(β)

are Hilbert modular forms which lie in the Kohnen’s plus space M+
3
2

(Γ0(4n`)).

Proof. By the q-expansion map (3.3) we have that the theta series θQs are Hilbert modular forms and by
(3.6) it follows than its weight is 3/2.

For δv ∈ OFv , we notice that OFv +
δv +

√
−δv

2
OFv is an OKv -order if and only if δv ≡ 0, 1 mod 4OFv .

Let us show the condition under which it is an OKv
-order. We require that (δv +

√
−δv/2)2 ∈ OFv

,
which is equivalent to (δ2

v − δv)/4 ∈ OFv
. Hence the sufficient and necessary condition to be an order is

that δv ≡ 0, 1 mod 4OFv
. Since Qs,v(βv) = −δv ≡ 0, 1 mod 4OFv

we have that the coefficients of θQs,v
,

i.e., the r(Qs,v, δv)’s are non-zero only if −δv ≡ 0, 1 mod 4OFv . By Hasse–Minkowski theorem we obtain
the global result.
Concerning the level, we proceed as in [27, Lemma 4.4]. Given that that θQs

∈ M+
3/2(Γ0(4m)), for m the

smallest ideal such that 4m has even integral coefficients, it is enough to see that the inverse of the matrices
appearing in the proof of Lemma (3.8) have even integral coefficients after multiplying by 4vn, where n is
the v-adic valuation of n`. �

3.2.3. Automorphic Theta Series. In order to obtain automorphic theta forms from Weil representations,
we need to introduce the analogue of self-dual16 functions on the lattice V (F ) ' Fn, for a quadratic space
(V,Q) with Q a n-ary form.

For v a non-archimedean place of F , consider the functions

1v :=

n∏
i=1

1OFv
,

where 1OFv
denotes the characteristic function of OFv . We have that 1̂v = 1v, i.e., the Fourier transform of

1v is itself. For v =∞ an archimedean place, we define 1∞ to be the Gaussian exponential exp(−πQ(x)).
Note that 1v ∈ L 2(Fnv ). Any adelic Schwartz-Bruhat function φ ∈ S(AnF ) is a (finite) linear combination
of the product

∏
v φv where φv ∈ S(Fnv ) and φv = 1v for almost all v (see [25, Rmk.4.3.1]).

In order to associate to each of these quadratic forms a function on G̃L2(AF ) we consider the following
linear functional on S(AnF )

Θ: φ 7→
∑
x∈Fn

φ(x)

called theta-distribution. Note that the series defining the Θ(φ) converges and Θ spans the space of

SL2(F )-invariant forms on S(AnF ). After inducing up to G̃L2(AF ), the action of the Weil representation
rQ attached to the form Q on the theta-distribution defines

ϑQ(g, φ) =
∑
v∈An

F

rQ(g)φ(v)

for g ∈ G̃L2(AF ). This function is called theta-kernel and it defines an automorphic form on G̃L2(AF ).
For more details, see [20, Sec.2.6].

16With respect to the Fourier transform.
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3.2.4. Ternary Quadratic Forms and Optimal Embeddings. In this section we introduce one of the key
ingredient of the equidistribution we are going to prove.

Lemma 3.10. Let δc be the idele corresponding to the ideal Dc2 by (3.2). Then we have the following
((#R×s /#O×D,c) : 1)-correspondence{

primitive representations

Q̂s(b) = δc

}
←→

{
optimal embeddings
f : OD,c ↪→ Rs

}
.

Proof. First we show how to obtain a representation from an embedding and viceversa, inspired by [23,
Prop.12.9]. Indeed, we proceed locally at the finite places v of F . Let δc,v = Dvcv be the product of the
generators of the ideals D and c at v. By the local-global principle for embeddings (see [45, Prop.14.6.7]),
we can write

OD,c,v = OFv +
δc,v +

√
−δc,v

2
.

Consider an embedding fv : OD,c,v ↪→ Rs,v and denote by βv := fv(
√
−δc,v). Since

2fv

(
1

2
(δc,v +

√
−δc,v)

)
= δc,v + βv,

then βv ≡ −δc,v mod 2Rs,v, so that βv ∈ Λs,v. Since nrv(βv) = δv, we obtained the desired representation.
On the other hand, let βv ∈ Λs,v of reduced norm δc,v. We thus write βv = γv + 2rv, for γv ∈ OFv and

rv ∈ Rs,v, so that

δc,v = nrv(bv) = −(γv + 2rv)
2 ≡ −γv mod 4Rs,v.

Thus we have βv ≡ −δc,v mod 2Rs,v, and we obtain an embedding fv : OD,c,v ↪→ Rs,v by setting

fv

(
δc,v +

√
−δc,v

2

)
=
δc,v + βv

2
.

Finally, we recall that being optimal is a local property, i.e., an embedding f : OD,c ↪→ Rs is optimal if and
only if fv : OD,c,v ↪→ Rs,v is optimal at all the places v (see, for instance, [45, Lemma 30.3.6]). Therefore,
we proceed by localizing as above.

Since we closely follow [27, Lemma 4.1], we only sketch the strategy to show the correspondence between
optimal embeddings and primitive representations without the necessary algebraic manipulations. By
contrapositive, if Qs(βv) = δc,v is not primitive, then we can write βv = αvkv for αv ∈ Λs,v and kv ∈ OFv .

By showing that
δc,v+αk2v

2k2v
belongs to fv(Kv) ∩ Rs,v but not to fv(OD,c,v), one concludes that fv is not

optimal. Lastly, if we suppose that fv is not an optimal embedding, then fv(OD,c,v ⊗Fv)∩Rs,v = OD,c′,v
where c = c′k for k ∈ OFv

. �

3.2.5. Genus and Spinor Genus. We revise here a few classical concepts following [25]. An equivalent
formulation can be found, for instance, in [28, p.105].

Let (V,Q) denote a quadratic space over F with a symmetric, bilinear form β. We recall that an-
other form Q′ is equivalent to Q if there exists an invertible linear change of variables f such that
Q′(f(x)) = Q(x). The set of OF -equivalence classes that are OFv

-equivalent locally for all v’s is the
class number of Q. The genus of Q is the set of all forms with the same localization as Q. The class
number of Q is equal to the cardinality of gen(Q), which is finite by a classical result of Siegel. In terms of
lattices, let L be a integral lattice in V . Then we denote by gen(L) the genus of L, defined to be the set
of integral lattices M such that Lv ' Mv for every place v of F (including the archimedean ones). More
geometrically, the genus of L is the orbit of L under the action of the orthogonal group. Note that lattices
in the same genus are isomorphic as OF -modules.
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In the case of ternary quadratic forms, the genus is moreover subdivived into spinor genera, which
essentially are the subgenera given by equivalence under the spinor group. More precisely, the spinor
norm is the group homomorphism

O(V )→ F×/F×,2

(x 7→ x− 2uβ(x, u)/Q(u)) 7→ Q(u)

i.e., it sends a reflection orthogonal to v into Q(v). We denote by Spin(V ) the isometries of spinor norm
1. This gives a two-fold cover of the special orthogonal group.
Two lattices L and M are in the same spinor genus if there is a rotation σ ∈ SO(V ) and for every place
v there is rv ∈ Spin(Vv) such that Lv ' σvrvMv.

Lastly, we recall that the automorphs of Q are the isometries from Q to itself. Let wQ be the number of
the automorphs of Q, i.e., the cardinality of StabGL3(OF )(Q). Indeed the automorphs of Q are finite: since

any of them is determined by its action on a O3
F -basis, and for m big enough we have that the finitely

many vectors in the compact defined by Q(u) 6 m generate O3
F .

3.2.6. Theta Series associated to Genus and Spinor Genus. We now associate two theta series to the genus
gen(Qs) and spinor genus spn(Qs).

Let us define the genus and spinor genus mass17

(3.8) r?(♦, δ) =

∑
Q∈♦ r

?(Q, δ)/wQ∑
Q∈♦ 1/wQ

and

(3.9) θ♦ =
∑
δ∈AF

r(♦, δ)qδ

for♦ ∈ {gen(Qs), spn(Qs)} and ? ∈ {∅, ∗}, where ∗ denotes the restriction to primitive representations18.

Proposition 3.11. Let s be in the supersingular or superspecial locus of the special fiber of SU at v, for
v unramified or ramified in K respectively. Then we have:

(1) the theta series θ♦’s are in the same space as θQs
;

(2) the modular form
θQs − θspn(Qs)

of weight 3/2 lies in the orthogonal19 complement of the space of 1-dimensional theta series;
(3) the modular form

θgen(Qs) − θspn(Qs)

of weight 3/2 lies in the space spanned by 1-dimensional theta series.

Proof. Let us first recall the very well known fact that the space of Hilbert modular forms decomposes
uniquely as a direct sum of cusp forms and Eisenstein series. In particular, the Hilbert modular form θQs

defined in Lemma 3.9 decomposes as
θQs = E +H + s

namely, the sum of an Eisenstein series E and two cuspidal forms H and s, where the Shimura lift of H
is an Eisenstein series, hence it is non-cuspidal.
In the automorphic setting, we have the automorphic theta form ϑQs and, by Lemma 3.2, H and s
corresponds to two cuspidal automorphic forms which we still denote by πH and πs. By Lemma 3.16 and
Proposition 3.7 we can decompose the automorphic theta form as

ϑQs = Ψ + πH + πs

17From the German word “maß”, which means “weight, measure”.
18And ∅ symbolizes the absence of any index.
19Where orthogonality is considered with respect to the Petersson inner product.
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for a pseudo-Eisenstein series Ψ and for πH ∈ Lres. By Section 3.1.6, we have that the “kernel” of the
Shimura lifting Shi consists of those cuspidal π’s which come from Hecke characters. This immediately
implies that πH has a non-cuspidal Shimura lift.

Consider now the Whittaker–Fourier coefficients WE and WH of E and H. By the work of Schulze-Pillot
[42, Satz 2] (see also [24, p.366])

(3.10) WE(δ) = r(gen(Qs), δ), WE(δ) +WH(δ) = r(spn(Qs), δ).

By (3.10) and the fact that the θQ’s are all in the same Kohnen space as θQs for Q ∈ gen(Qs) we obtain
that θ♦’s are in the same space as θQs .

We now prove the second part of the Lemma. In the automorphic setting, the comparison of the
Whittaker–Fourier coefficients of the automorphic forms ϑQs

and ϑspn(Qs) show that their difference is not
spanned by any form in r(χ). In modular forms terms, this means this difference lies in the orthogonal
complement.

The third part of the Lemma follows from analogous comparison of Whittaker–Fourier coefficients (in
the modular form case due to [42]) of the automorphic forms associated to θgen(Qs) and θspn(Qs) and by
Section 3.1.6. �

3.3. Equidistribution. We now state our main equidistribution result, whose proof is given in Section
3.3.3. From now on, let us denote by w(s) := #R×s , for s a supersingular or a superspecial point. Similarly,
let us denote by w(c) the cardinality of the endormorphism ring of the reduction of a CM point landing
on the component c of the smooth locus S sm

U,k.

Theorem 3.12. Let ? ∈ {ss, ssp}. The sequence of measure (µ?D,c)D,c converges, in the weak-* topology,
to the canonical measure

µ?(s) :=
w(s)−1∑

s∈S �k
w(s)−1

as D and c vary, that is, as their absolute norms tend to infinity.
Moreover, we also have that the sequence (µssp

in,D,c)D,c converges to the measure

µssp
in (ci) :=

w(ci)
−1∑h

j=1 w(cj)−1

on the set {c1, . . . , ch} of components of the smooth locus S sm
U,k.

3.3.1. Bounds for the Fourier–Whittaker Coefficients. The following estimate makes essential use of the
Brauer–Siegel theorem, i.e., a lower bound for the class number in the (totally real) number field setting.
Note that the ineffectivity of our equidistribution results comes from the use of such notoriously ineffective
bound.

Lemma 3.13. Let ΓD,c be the Galois orbit of the CM point defined over the CM field K of discriminant
Dc2. We have that

r∗(Qs, Dc
2) ·#O×D,c

#ΓD,c
=
r∗(spn(Qs), Dc

2) ·#O×D,c
RK ·#ΓD,c

+O(N(Dc2)−
7
32 +ε).

Proof. Consider an irreducible cuspidal automorphic representation π of G̃L2(AF ) orthogonal to the sub-
space spanned by theta-representations and pick an automorphic form ϕ of π. By [6, Cor.1] the following
bound holds

(3.11) a(ϕ,m)�ϕ,F,ε N(m)
1
2−

1
8 (1−2θ),

where a(ϕ,m) is the m-th normalized Whittaker–Fourier coefficient of ϕ and θ ∈ [0, 1
2 ] is an approximation

towards the Ramanujan–Petersson conjecture. By the work of Kim–Shahidi [33], we can take θ = 1/9.
Thus we obtain the exponent 1

2 −
1
8 (1− 2

9 ) = 29
72 .

Now, by Proposition 3.11, we have that θspn(Qs) − θQs
is a cusp form of weight 3/2 which lies in the

orthogonal complement of the space of unary theta series. Consider the automorphic representation of
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half-integral weight spanned by this form, and denote it by ϑ. Note that, since ϑ it is not in the image of
the correspondence of Lemma 3.3, its Shimura lift Shi(ϑ) is cuspidal. Thus by (3.11) it follows that

r∗(spn(Qs), Dc
2)− r∗(Qs, Dc2)�ϑ,F,ε |N(Dc2)| 2972 +ε.

Furthermore by the Brauer–Siegel theorem (see, for instance, [35, Chap.XVI]) we have the following lower
bound for the class number hK

hKRK �ε N(Dc2)
1
2−ε

where RK is the regulator of K. Since K is a CM field, by [17, Thm.B] we have that RK > 1/4. Therefore

r∗(Qs, Dc
2) ·#O×D,c

#ΓD,c
−
r∗(spn(Qs), Dc

2) ·#O×D,c
#ΓD,c ·RK

� N(Dc2)−
7
32 +ε.

�

For our equidistribution purposes, it is important the trivial remark that the exponent 29
72 is smaller

that the Duke’s one 13
28 as considered in [27, p.518].

3.3.2. Auxiliary Results. Let

(
K/F

·

)
denote the Artin symbol.

Lemma 3.14. Let h(Oc) and h(OK) denote the class numbers of Oc and OK respectively. Then we have

h(Oc) = h(OK)
N(c)

[O×K : O×c ]

∏
p|c

(
1−

(
K/F

p

)
1

N(p)

)
.

Proof. We follow the lines of [10, Thm.7.24]. Let IK(c) denote the group of fractional OK-ideals prime to
c and let PK,OF

(c) be the subgroup of IK(c) generated by the principal ideals αOK , for α ∈ OK such that
α ≡ a mod cOK for a ∈ OF coprime to c. Then, by an immediate adaptation of [10, Prop.7.22], we have

h(Oc) = #
IK(c)

PK,OF
(c)

.

The inclusion PK,OF
(c) ⊂ IK(c) ∩ PK allows us to consider the short exact sequence

0 IK(c) ∩ PK/PK,OF
(c) Cl(Oc) Cl(OK) 0,

so that we just need to compute

(3.12) #(IK(f) ∩ PK/PK,OF
(f)) = h(Oc)/h(OK).

For [α] ∈ (OK/cOK)× let us consider the surjective morphism

φ : (OK/cOK)× −→ IK(c) ∩ PK/PK,OF
(c)

defined by [α] 7→ [αOK ]. For the sake of simplicity, let us now assume tnat #O×K = 2. We thus obtain the
following short exact sequence

1 (OF /c)× (OK/cOK)× IK(c) ∩ PK/PK,OF
(c) 1i φ

where i is the natural injection. Analogously to the classical case, the number of units in the quotient
OF /c is given by

(3.13) #(OF /c)
× = N(c)

∏
p|c

(
1− 1

N(p)

)
(see [37, Thm.1.19]). Combining formula (3.13) with the Chinese remainder theorem we thus obtain

(3.14) #(OK/cOK)× = N(c)2
∏
p|c

(
1− 1

N(p)

)(
1−

(
K/F

p

)
1

N(p)

)
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where indeed N(c)2 = N(cOK). Note that the Artin symbol summarizes the sign coming from the primes
of c being split or inert in K.

Finally, combining (3.14) with (3.13) and (3.14) we obtain

h(Oc)/h(OK) = N(c)
∏
p|c

(
1−

(
K/F

p

)
1

N(p)

)
.

Lastly, if #O×c > 2, it is enough to consider the following exact sequence

1 {±1} (OF /c)× × O×K (OK/cOK)× IK(c) ∩ PK/PK,OF
(c) 1

j ψ φ

where j : ± 1 7→ ([±1],±1) and ψ : ([n], u) 7→ [nu−1].
In this case, we have

#(IK(c) ∩ PK/PK,OF
(c)) = 2

#(O×K/cOK)×

#(OF /c)×#O×K
.

Again, by (3.12), we conclude

h(Oc)/h(OK) =
N(c)

[O×K : Oc]

∏
p|c

(
1−

(
K/F

p

)
1

N(p)

)
.

�

From now on, let us set uD,c := #O×D,c. We write uD,1 to denote the cardinality of the order of trivial
conductor.

Corollary 3.15. We have that the limit defined as

lim
k→∞

r∗(gen(Qs), Dp2k)uD,pk

#ΓD,pk

exists and it is independent of s and p.

Proof. The independence of s follows from the definition of gen(Qs).
On the other hand, by [28, Thms.49,72,85,86] we have

(3.15) r∗(gen(Qs), Dp2k) = A
h(Dp2k)

uD,pk

where the constant A depends only on the Artin symbol. Combining equation (3.15) with Lemma 3.14 we
have

r∗(gen(Qs), Dp2k) ∼ N(pk)

(
1− 1

N(p)

(
K/F

p

))
h(OK)

uD,1
(3.16)

#ΓD,pk = N(pk)

(
1− 1

N(p)

(
K/F

p

))
uD,pk

uD,1
#ΓD,1(3.17)

where ∼ means equality up to a constant depending on D and the Artin symbol only.
Therefore we obtain

r∗(gen(Qs), Dp2k)uD,pk

#ΓD,pk

= C
h(D)

#ΓD,1
where the right-hand side is independent of p. �

Lemma 3.16. Let c be coprime to n and `. Then, for every s supersingular or superspecial, in the special
fiber at an inert or ramified prime respectively, we have that

(3.18) fD,p(s) := lim
k→∞

r∗(Qs, Dp2k)uD,pk

#ΓD,pk

= #R×s · µ�,

where � ∈ {ss, ssp}.
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Proof. By Section 2.3.6, we have maps to pass from Gross points to supersingular or superspecial points.
In view of those constructions, Lemma 3.16 in the supersingular case follows almost verbatim from [44,
Thm.1.5] and from Lemma 3.10. On the other hand, the superspecial setting hardly changes the proof.
In fact, note that the auxiliary prime `, which one suppose unramified in B, is different from the prime
of reduction v, which thus can be of ramification in B. In both cases, the equidistribution is reduced to a
classical statement on finite graphs [44, Prop.3.14]. �

Remark 3.17. We invite the reader to note how Vatsal’s proof of the previous Lemma is crucial for our
results: the absence of any ergodic theory is the reason why we can allow the discriminant to vary in
Theorem 3.12, in contrast20 to [9] and [41].

Next result shows that there is only a single spinor genus.

Lemma 3.18. Let s be either in the supersingular or in the superspecial locus of SU . Suppose also that
c is coprime to n and `. Then

r∗(gen(Qs), Dc
2) = r∗(spn(Qs), Dc

2).

Proof. We proceed as in [27, p.520], i.e., by reductio ad absurdum. Let E be the extension of F of

discriminant DDQs
. Consider a prime p coprime to N and ` such that

(
E/F

p

)
= −1. Denote by W (m)

the m-th Whittaker–Fourier coefficient of θgen(Qs) − θspn(Qs).
By (3.16) we have

fD,p(s) = lim
k→∞

(r∗(spn(Qs), Dp2k)− r∗(gen(Qs), Dp2k))uD,pk

#ΓD,pk

+
r∗(gen(Qs), Dp2k)uD,pk

#ΓD,pk

= lim
k→∞

W (Dp2k)

#ΓD,pku−1
D,pk

+
r∗(gen(Qs), Dp2k)uD,pk

#ΓD,pk

.

By Proposition 3.11 W (Dp2k) is of weight 3/2 and spanned by 1-dimensional theta series as implied by
Lemma 3.3. By [43] and following [48, Cor.3.5.3], we can write, in analogy with Remark 3.4, such a Hilbert
theta series as

θω(z) =
∑
m

ω(m)N(m)qN(m2)

where ω is a Hecke character and m an integral ideal. Therefore one obtains the formula

(3.19) W (Dp2k) = N(p)k
(
E/F

p

)k
W (D)

by the analogous steps of [27, Lem.4.9]. Hence by formula (3.19) and formulae (3.16) we can write

N(p)k
(
E/F

p

)k
W (D) · uD,1

N(p)k
(

1− 1

N(p)

(
K/F

p

))
#ΓD,1

.

By Lemma 3.16, we have that the limit

lim
k→∞

r∗(gen(Qs), Dp2k)uD,pk

#ΓD,pk

exists. However, the limit21

lim
k→∞

W (Dp2k)

#ΓD,pku−1
D,pk

∼ lim
k→∞

(−1)k

does not exist. This yields the desired contradiction. �

20There is a price to pay: Vatsal’s equidistribution holds for the reduction at a single prime only.
21Where the symbol ∼ means equality up to a constant.
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3.3.3. Proof of Theorem 3.12. Combining the subconvexity bound of Lemma 3.13 with Lemma 3.18, we
obtain

r∗(Qs, Dc
2)uD,c2

#ΓD,c
=
r∗(gen(Qs, Dc

2))uD,c
RK ·#ΓD,c

+O(N(Dc2)−
7
32 +ε).

Let s be a geometric point either in the supersingular or in the superspecial locus. By Lemma 3.10 we
have that the number of optimal embeddings of OD,c into Rs is given by

(3.20) r∗(Qs, Dc
2)
uD,c
ws

.

Since the sum over all geometric points s of (3.20) is equal to #ΓD,c, we obtain

1 =
∑
s∈S �k

r∗(Qs, Dc
2)uD,c

ws ·#ΓD,c

=
r∗(gen(Qs, Dc

2))uD,c
RK ·#ΓD,c

∑
s∈S �k

1

ws
+O(N(Dc2)−

7
32 +ε),

where the independence of r∗(gen(Qs, Dc
2)) from s gives the second equality.

Since
r∗(gen(Qs, Dc

2))uD,c
RK ·#ΓD,c

=
1∑

s∈S �k
w−1
s

+O(N(Dc2)−
7
32 +ε)

we have that limN(Dc2)→∞
r∗(gen(Qs, Dc

2))uD,c
RK ·#ΓD,c

exists.

Therefore

lim
N(Dc2)→∞

r∗(Qs, Dc
2)uD,c

#ΓD,c

= lim
N(Dc2)→∞

r∗(gen(Qs, Dc
2))uD,c

RK ·#ΓD,c
+O(N(Dc2)−

7
32 +ε)

=
1∑

s∈S �k
w−1
s

= wsµ
?

and so we conclude.

4. An André–Oort-like Result

Following [39] and [40], we consider the 2-dimensional arithmetic André–Oort conjecture [40, Conj.2.3]
for the integral model S over Z. For the general statement of this conjecture for Shimura varieties, see
[40, Sec.2.1].

4.0.1. Horizontal André–Oort in Pencils. Intuitively, the word “horizontal” refers to the fact that we allow
the characteristic p to vary over Z.

Let S(dK)CM denote the set of CM points with discriminant dK . Note that two CM points have the
same discriminant if and only if they belong to the same GQ-orbit. A special Cartier divisor S is an
element of the group of divisors Div(SFp

) of the form∑
z∈S(dK)CM

[redp(z)].

Note that the degree of S coincides with its cardinality #S.
Consider the Galois orbit of CM points of discriminant dK . Denote by E be a field and let s = SpecE.

For a E-scheme X locally of finite type, we recall that there is an equivalence between scheme theoretic
points of X and Galois orbits of geometric points. Namely, the map

X(E) −→ X, x 7→ x(s)
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induces a bijection between the set of GE-orbits in X(E) and the set of closed points in X. Therefore
such a GQ-orbit corresponds to a unique closed point x(dK) in S over Q. Note that the Zariski closure of

x(dK), which we call special curve, is such that x(dK)
Zar

(Fp) = redp(S(dK)CM).

This horizontal extension of the André–Oort conjecture (as proposed in [39, Conj.1]) concerns the Zariski
closure of a collection of special divisors in S .

Theorem 4.1. Let S denote a collection of special divisors. Then the Zariski closure of ∪{S : S ∈ S} in
S is a finite union of the following subsets:

(1) a special divisor S, for p and dK fixed;

(2) the special curve x(dK)
Zar

, for dK fixed;
(3) the fibers SFp

over p, for p fixed;
(4) the integral model S .

As in [40, Def.3.1], we call the characteristic of a special divisor S the prime p such that S ⊂ SFp
. The

structure of a special divisor S falls under one of the following cases:

(1) if Bp is ramified, it consists
• either of superspecial points;
• or of supersingular points;

(2) if Bp is unramified, it consists
• either of supersingular points;
• or of ordinary points.

We thus label a special divisor as superspecial , supersingular or ordinary if it lies either in the super-
special or in supersingular, or in the ordinary locus of the special fiber of S . Note that such a divisor will
be entirely contained in only one of these sets.

We conclude with a result which adapts [32, Thm.12.4.5] to our Shimura curves setting and that we are
gonna exploit in the next final session.

As in [29, p.364], we recall that a OB⊗Zp-module N decomposes as N = N1⊕N2 = N1⊕ (N2,1⊕N2,2),
where the M2(Zp)-module N2 decomposes22 into the sum of two Zp-modules.
Consider the following moduli problem F of Zp-algebras

S 7−→ [A, θ, κ]

where the triple [A, θ, κ] is an isomorphism class consisting of

(1) an abelian surface A over S with an action ι : OB ↪→ EndS(A) such that Lie(A)2,1 is of rank-1 and
Zp acts on it23;

(2) a class of polarizations θ : A → A∨ such that, for every b ∈ OB , the associated Rosati involution
takes ι(b) to ι(b∗);

(3) a class of OB-linear rigidifications κ : OB ⊗ Ẑ '
∏
p Tp(A).

This moduli problem is representable by S × SpecZp. For more details, we refer to [29, Sec.4.1] and
[48, Prop.1.1.5].

Let us consider the category of abelian surfaces base-changed to Fp and the moduli problem F on it

defined by base-change over Fp. Indeed, F is representable by the special fiber S × SpecFp.

Lemma 4.2. The number of supersingular points in the special fiber of S at p is given by

#S ss
Fp

=
p− 1

24
deg(F),

where deg(F) is the degree with which F is finite étale over the stack of abelian surfaces over Fp.

22After choosing an idempotent of M2(Zp).
23Since Lie(A) is a OB ⊗ Zp-module, it admits the above decomposition.
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Proof. Let us refresh a few facts on the Hasse invariant H for Shimura curves, following [29, Sec.6]. Firstly,
consider the universal abelian scheme ε : A → S as in Section 2.3.1, and let Ω1

A /S be the canonical bundle.

Note that the OS -module ε∗Ω
1
A /S is also a OBp -module, and we introduce ω = (ε∗Ω

1
A /S )2,1, which is a

line bundle24 over S .
We now have that H is a modular form of weight p− 1 over S ⊗ Fp constructed as a section of bundle

ω⊗(p−1) over S × SpecFp. By [29, Prop.6.1,6.3] it follows that H vanishes exactly in the supersingular
locus and it has only simple zeros. Therefore, by [32, Cor.10.13.12], the number of supersingular points,
i.e., the number of zeros of H counted with multiplicities, is equal to

degω⊗(p−1) = (p− 1) degω =
p− 1

24
deg(F).

�

4.0.2. Proof of Theorem 4.1. Armed with the constructions and results of the rest of this paper, we follow
the line of reasoning of [40]. Note that what follows holds, mutatis mutandis, also for a Shimura curve SU
attached to B = M2(Q), i.e., for modular curves with arbitrary level structure.

We begin with parts (1) and (3) of Theorem 4.1. Since the fiber of the map S → SpecZ above a prime
p is the curve S × SpecFp, then one easily concludes, because the special fiber of S at p is of dimension
one. It thus follows that there is either a finite set of special points, so the closure is the just their union,
or the closure of the (infinitely many) special points is SFp itself, because the closure of any infinite subset
of an irreducible curve is the whole curve.

Concerning the case (2) of Theorem 4.1, we reduce to the case of special divisors of bounded degree

and characteristic going to infinity. Moreover, we can also reduce to the case of ∪{S : S ∈ S}
Zar
→ SpecZ

sending its generic points to the generic point of SpecZ. To show this, let Z ′ denote the union of the
irreducible components of the Zariski closure of ∪{S : S ∈ S} which are contained in a special fiber SFp

.
Since the characteristic is not bounded, in Z ′ there are a finite number of special divisor. We thus consider

Z to be Z ′ minus such divisors. Thus Z → SpecZ sends the generic points of ∪{S : S ∈ S}
Zar

to the
generic point of SpecZ.

Let p be unramified in B and split in K, i.e., the associated special divisor S is ordinary. We say that S is

canonical if it is the special fiber at p of a special curve x(dK)
Zar

such that #redp(S(dK)CM) = #S(dK)CM.
By Serre–Tate theory (see [7, Sec.0.9]), there is a unique such canonical lifting x(dK). For a detailed account
on this beautiful theory, we invite the reader to go through [31].
As in [40, Sec.3.2.4.1], there are only finitely many special curves of bounded degree. Moreover, the
ordinary special divisors lift to special curves with bounded discriminant, so that we have only a finite
number of discriminants and we deal with a finite union of special curves. This case is 1-dimensional, so
we conclude as for parts (1) and (3).

Let p be unramified in B and inert in K, i.e., the associated S is supersingular.
As in [40, Thm.3.8], this case reduces to showing that

(4.1) lim
p→∞

lim
dK→−∞

#redp(S(dK)CM) =∞,

for p coprime to the conductor. We also need to impose that p→∞ for supersingular special divisor. In
fact, for a fixed p,

lim
dK→−∞

#redp(S(dK)CM) = #S ss
Fp

=
p− 1

24
deg(F)

where the first equality is a consequence of Theorem 3.12 the cardinality of the supersingular locus
comes from Lemma 4.2.

24This follows from the fact that Lie(A )2,1 is locally free of rank-1.
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In order to prove (4.1), the rather general approach of [40] applies also to our scenario. Namely, this
consists of finding some bounds for #redp(S(dK)CM). In order to give such bounds, the first step consists
of noticing that one can easily reduce to give a uniform bound to the Fourier coefficients of the theta form
attached to the ternary quadratic form Qs, for s a supersingular point as in Section 3.2.2. To do so, the
toolbox in [40, Sec.5,6] contains, in order, the Dirichlet–Hermite bound, a more convoluted subconvexity
bound, which involves the representation numbers associated to the genus gen(Qs) as in Section 3.2.6 and
the so-called “slices” method. By moving the problem to bounding the representation numbers, these
methods apply verbatim to our setting.

In the case of a superspecial special divisor, the proof follows the very same lines as in the superspecial
case. A (minor) difference is the cardinality of the superspecial locus: by [30, Sec.5] we have that #S ssp

Fp

grows polynomially in p. We also finally point out that for the Gross lattice, one has to consider the
construction we described in Sections 2.3.4 and 3.2.2 for superspecial points.

In conclusion, let us consider the case of S containing an infinite subsequence with both the characteristic
and the degree going to infinity, i.e., the case (4) of Theorem 4.1. If the characteristics of the special points
do not belong to a finite set, then their closure Z intersects infinitely many fibers, and the divergence of
the degrees implies that

lim sup
p→∞

#(Z ∩SFp) =∞,

namely, Z has intersection of arbitrarily large order as p goes to infinity. Now we claim that a closed
(hence proper) subscheme Z of S have bounded intersection with almost all fibers. Therefore we conclude
that Z = S . To prove such a claim, it is enough to note that Z does not contain all of SQ = S, hence ZQ
is finite. By generic flatness, there is some N > 0 such that Z is flat over Z[1/N ]. Therefore we have that
#(Z×SpecFp) = #ZQ over Z[1/N ]. This implies that the size of ZFp

is bounded for all p not dividing N .
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